Web Cache Communication Protocol (WCCP)

Introduction

- Objective Provide a conceptual understanding on what WCCP is, the factors that have gone into it's development, and thoughts on what we (Cisco) can use for tomorrow.
- This is not in-depth technical

Web Cache Communication Protocol (WCCP)

- Content Routing Technology first introduced in 1997
- Provides mechanism to redirect traffic flows [originally caches] in real-time
- Has in-built load-balancing mechanism, scaling, fault tolerance, and service-assurance (failsafe) mechanisms

First - what exactly is the name?

• WCCP's many names:

Web Cache Coordination Protocol

Web Cache Control Protocol

 Web Cache Communication Protocol is the name was finally reached via internal consensus. (yes we need to change the names on the Internet-Drafts)

Second - WCCP is not just Web

- WCCPv2 works with any TCP/UDP port.
- The name suggest "web," but the key value is it's use for redirection of other applications.

Web Cache Communication Protocol (WCCP)

- WCCPv1/WCCPv2 implemented by several vendors:
 - Inktomi, NetApps, CacheFlow, Novell, Infolibra - orginal licensees
 - Squid has a version with WCCPv1 w/ WCCPv2 coming (when Lincoln has time) CISCO SYSTEMS

lnktomi

Network Appliance

Novell.

Presentation_ID © 1999, Cisco Systems, Inc.

INTERNAL DOCUMENT - CONFIDENTIAL

Transparent Redirection of a Flow in the POP Factors that went into the design of WCCP

- Transparent Redirection of a IP flow based on source, destination, and/or port number.
- Transparent Integration no rebuilding the POP to add this service.
- Failed open if the service fails, it should not effect the core IP service nor any other services.

Presentation_ID © 1999, Cisco Systems, Inc. INTERNAL DOCUMENT - CONFIDENTIAL

 Not to effect the primary packet flow of the POP - if not redirected - then is CEF/dCEF Switched!

 Work with the multi-level L2/L3 redundancy of the ISP POP. Equal paths in the IGP + **CEF leads packet asymmetry.**

Provide the ISP with Flexibility on the point of redirection.

Design Objectives for the Service Group

- Linear Scalability with the Cache minimize object replication.
- Fault Tolerance and Maintenance.
- "Joe Smith the Telco Tech" test.

WCCP - Where Used Today

Transparent Redirection into:

 Cache Service Cluster(s)
 Reverse Proxy Service Cluster(s)
 Replication Service Clusters(s)
 CDN Overlay Networks (Inktomi Mirror Image, and NetApps)

- ISP POPs
- Benefits:
 - Accelerated content delivery
 - Protection vs. uncontrollable bottlenecks (e.g. Web servers)

Reverse Proxy

- Cisco Cache Engines off-load traffic off the Web servers
- Accelerate Web site, increase capacity

WCCP Basic Functionality

 Connection initiated from web-browser or other service.

- Connection initiated from web-browser or other service
- Router <u>intercepts</u> flow and redirects it to new location (the original packet is encapsulated unchanged within a GRE frame)

- Connection initiated from web-browser or other service
- Router <u>intercepts</u> flow and redirects it to new location (the original packet is encapsulated unchanged within a GRE frame)
- Device that flow is redirected to can choose what to do with flow:
 - send somewhere else
 - / masquerade as real server

- Connection initiated from web-browser or other service
- Router <u>intercepts</u> flow and redirects it to new location (the original packet is encapsulated unchanged within a GRE frame)
 - Device that flow is redirected to can choose what to do with flow:
 - send somewhere else
 - ✓ masquerade as real server
- Cache Engine will serve flow (in case of *hit*), will initiate second flow if a *miss*

WCCP's Basic Caching Function Subsequent Requests

 Connection initiated from web-browser

WCCP's Basic Caching Function Subsequent Requests

- Connection initiated from web-browser
- Router <u>intercepts</u> flow and redirects it to new location (the original packet is encapsulated unchanged within a GRE frame)

WCCP's Basic Caching Function Subsequent Requests

- Connection initiated from web-browser
- Router <u>intercepts</u> flow and redirects it to new location (the original packet is encapsulated unchanged within a GRE frame)

Cache masquerades as the web-server. Object is served locally from the cache

WCCP Features

WCCP's Features

WCCP's Features are in two parts:

- ✓ Router Based Benefiting the operation of the ISP Edge (POP) or Enterprise Gateway.
- Service Group Benefiting the applications WCCP is servicing

WCCP's Features (Router)

- Transparent Integration
- Fail Open on the Service Group Failure
- On-line Maintenance of the Service Group
- Multiple Router Support in one Service Group MD5 Authentication between Router and Service Group

WCCP's Features (Router)

- CEF and dCEF Switched
- Multiple Service Groups
- Options on where the redirections happens

WCCP's Features (Service Group)

- Fault Tolerance of the Service Group
- On-line Maintenance of the Service Group
- Linear Scalability of the of the Service Group
- WCCP Slow Start

WCCP's Features (Service Group)

- Fault Prevention Packet Return Feature (Overload and Bypass)
- Load Distribution (Hot Spots)
- Fail Open on the Service Group Failure
- Authentication By-pass

Transparent Integration

INTERNAL DOCUMENT - CONFIDENTIAL

Multi Router - POP Border Routers

Multi Router Support - POP Edge Devices

Multihome Router via HSRP

Multi-Service Group Support

Scalable Grouping

- Load balancing by hashing on destination IP address
- Linear, incremental scalability
- Hot insertion
- High availability, redundancy

Fault Tolerance

Automatic Redistribution

Service Group Maintenance

Service Group "Shutdown"

Stops accepting connections from WCCPTells WCCPv2 to stop sending flows

Service Group Maintenance

✓ Gradual hand off from other units in Group

Presentation_ID © 1999, Cisco Systems, Inc.

INTERNAL DOCUMENT - CONFIDENTIAL

Fault Prevention: Overload

Fault Prevention: Overload

WCCP - Which Software

Latest News

www.cisco.com

WCCPv2 Enhancements

- Announced late 1998, integrated into IOS 12.0(3)T
- Major Enhancement is that anything can be intercepted/redirected
 - Router is instructed what to intercept and how to load-balance it
- Supports flows being *re-inserted* back into original traffic path

WCCPv2 Enhancements

- Supports multiple routers/switches to multiple caches
- MD5 Authentication of Service Group
- 12.0(4)T CEF Switched
- 12.0(5)T Customer can select between WCCPv1 and WCCPv2

WCCPv2 Enhancements as of 12.0(11)S

- Flow Acceleration support
 - Any ACLs used to match traffic for interception will only require ACL to match on first packet in flow.
- DCEF switching on 7500+VIP
- Input-interface switching

Intercept based on input interface where traffic is coming in (current is output-only)

WCCPv2 Enhancements as of 12.0(11)S

- Most enhancements addressing perceived 'speed' issue.
 - WCCP can operate at hundreds of mbit/sec right now
 - ✓ Enhancements will mean per-packet additional cpu will be <3%</p>
- BGP Policy Propagation for WCCP- Ability to define traffic which can be intercepted via route-map.

Job Strain St

WCCP Enhancement for the CAT6K (12.1E)

- CAT6K Enhancements MLS path this means that the first packet will be software-switched, but subsequent packets only go thru the hardwareswitching path.
 - 12.1(2)E for sup1
 - 12.1(4)E for sup2

WCCP Enhancement for the CAT6K (12.1E)

1000x Performance Improvement

Sup I SW switched 100 Kpps

Q1 CY '00

Sup II HW switched 15-150 Mpps

Requires Layer 2 Cache Adjacency

H2 CY '00

INTERNAL DOCUMENT - CONFIDENTIAL

WCCP - Which Software?

- Three Production *flavors* of WCCP:
 - WCCPv1 the orginal 11.1CC
 - WCCPv2 (first round 12.0(3)T) Output Feature & CEF
 - VCCPv2 (second round 12.0(11)S) Input Feature & dCEF
 - WCCPv2 (third round 12.1.(3)E) CAT 6K Support
 GRE, L2, and L3 Forwarding to Service Group
 - WCCPv2 (forth round in progress) pull together the features 12.0(11)S and 12.1(3)E

Accelerated WCCPv2 for Catalyst 6x00

WCCPv2: GRE Encap, CEF/DCEF Switched Accelerated WCCPv2: L2 Rewrites, No GRE

	MSFC 1	MSFC 1	MSFC 2	MSFC 2	MSFC 2	MSFC 2
	GRE	L2	GRE	L2	GRE	L2
Conns/sec	50K	50K	150K	150K	150K	1M+
Throughput	170 Kpps	15 Mpps	510 Kpps	15 Mpps	510 Kpps	30 Mpps

Accelerated WCCPv2 for Catalyst 6x00

Today: Supervisor 1 support

CE 590+SA6: Cache 2.2 software

✓ Catalyst 6000: Catalyst OS 5.5, MSFC: Cisco IOS 12.1(2)E

• Q1 CY '01: Supervisor 2 support

CE 7320+SA12 or CE 590+SA6: Cache 3.2 software

✓ Catalyst 6000: Catalyst OS 6.1, MSFC: Cisco IOS 12.1(4+)E

Policy Propagation
with WCCPUsing MTRES vs ACLs

www.cisco.com

- Problem: Caching is an operational savings. What ISPs and Co-Lo Providers are looking for is a new revenue stream - CDNs
- Problem: How to maintain redirection ACLs and Route-Maps that will point redirected packets to the correct CDN service? (think 1000s of devices w/ ACLs)

- Answer use the FIB!
 - The FIB has the capability to add extra fields to describe a prefix.
 - Currently (12.0(11)S) there are four extra FIB fields - precedence, qos_group, traffic_index, and wccp_tag
 - Features would use a MTRE look-up in the FIB to get information on what to redirect.

Example - Step 1

Step 1- Router R2 (or another Router) mark the prefix with a community

```
router bqp 210
 neighbor 210.210.14.1 remote-as 210
 neighbor 210.210.14.1 route-map comm-relay-prec out
 neighbor 210.210.14.1 send-community
ip bgp-community new-format
access-list 1 permit 210.210.1.0 0.0.0.255
route-map comm-relay-prec permit 10
 match ip address 1
 set community 210:5
route-map comm-relay-prec permit 20
 set community 210:0
              INTERNAL DOCUMENT - CONFIDENTIAL
© 1999, Cisco Systems, Inc.
```

Presentation ID

Example - Step 2

Step 2 - Use the BGP Update to match the community and set the value in the FIB

```
router bgp 210
table-map precedence-map
neighbor 200.200.14.4 remote-as 210
neighbor 200.200.14.4 update-source Loopback0
ip bgp-community new-format
ip community-list 1 permit 210:5
route-map precedence-map permit 10
match community 1
set ip wccp 50
route-map precedence-map permit 20
```

Example - Status

Example - Step 3

Step 3 - WCCP used the a FIB lookup to get the WCCP_TAG. It then redirected based on the WCCP_TAG value.

```
!
ip wccp version 2
ip wccp web-cache password <pass> policy source 50
!
interface <xyz>
ip wccp web-cache redirect in
!
```

- Very powerful -- provides for selective inclusion in cache eligibility
 - 'Premium' hosting
 - Service Providers can offer transparent backbone caching. Peers/customers can choose to participate by setting bgp community/MED
 - ✓ Cache-only-dial-pool
 - Provider only wants to cache dial or DSL pool, yet address space is segregated.
 - Selective intercept based on administrative pref
 - Only cache traffic which is due to go out an expensive path (eg. International)
 - Redirects into CDN Services

Another Example

 The following example shows only "premium" traffic being cached.

Premium" traffic is defined as traffic which has:

- The policy defined below is:
 - → any traffic with community 4433:1050 set,
 - → any traffic with community 4433:1055 set,
 - ⇒ any traffic originating from directly-connected AS 65521,
 - ⇒ any traffic passing thru directly-connected AS 65522,
 - ⇒ any traffic passing thru AS 65523
- ✓ is eligible for intercept.
- Standard "web-cache" service is used -- which is a standard assignment of 'match tcp destination port 80', distribute traffic among participating caches as hashed by destination ip address.

Another Example

```
ip cef distributed
                          # ensure Distributed CEF is enabled
T.
ip wccp version 2
                          # enable WCCPv2
ip wccp web-cache password <pass> policy source 50
                          # enable WCCP standard web-cache service, apply policy
                          #"source"- match on WCCP route-tag 50
I
                                            # incoming i/face
interface <xyz>
  ip wccp web-cache redirect in
                                            # redirect on input traffic
L
router bqp XXXX
 table-map neighbor-xyz-in # BGP Updates the FIB's WCCP TAG field
I
ip bgp-community new-format
ip community-list 3 permit 4433:1050
                                            # AS4433 community 1050 is premium
                                            # AS4433 community 1055 is premium
ip community-list 3 permit 4433:1055
ip as-path access-list 121 permit ^65521$
                                            # only traffic from AS65521 is premium
ip as-path access-list 121 permit ^65522
                                            # any traffic thru AS65522 premium
route-map neighbor-xyz-in permit 10
                                            # incoming route filter on
  match as-path 121
  set ip wccp 50
I
route-map neighbor-xyz-in permit 15
  match community 3
  set ip wccp 50
```

```
Presentation_ID © 1999, Cisco Systems, Inc. INTERNAL DOCUMENT - CONFIDENTIAL
```

The Caveat

- BGP Policy Propagation for WCCP was only committed to 12.0(11)S.
 - Hence it is currently in 12.0(11)S and it's children - 12.0SC and 12.0SL
- Work is underway to have this committed to 12.1T and find ways for it to work on the EARL and GSR architecture (issue is the MTRE for the source address).

Where is WCCP going? (WCCP in 3+ months)

www.cisco.com

IETF Status

- WCCPv1 spec released as an IETF Internet Draft (under the WREC WG) Will be updated and re-submitted in July'00
- WCCPv2 Internet Draft submitted in July'00
- Not standards track material will work for Informational RFCs via WREC WG

WCCP Direction Forward

- IOS Sync between the 12.0(11)S improvements and the 12.1E improvements on the Cat6K.
- Working on WCCP functionality on the GSR Engine2, Engine3, and Engine4. Will not be able to support the full feature set.
- Most other IOS platforms have WCCPv2 12.XT support.

WCCP and our current CDN Solution?

Currently not part of the solution.

- ✓ DNS Flavor of Content Routing works in a ISP's multi-level redundancy architecture.
- VCCP is not needed unless managing CE/CN service groups (i.e reverse-proxy)

VCCP + Boomerang will work (Edge-Interception)

WCCP and our current CDN Solution

WCCP is a single ISP solution.

Our DNS based CDN solution spans multiple ISPs

