

Introduction • Presenter: Philip Smith, Consulting Engineer Office of the CTO, Cisco Systems e-mail: pfs@cisco.com • Please ask questions

Agenda

- Routing Terms and Concepts
- Introduction to IGPs
- BGP for ISPs
- Routing Design for ISPs
- Routing Etiquette and the IRR

Goals

- Promoting a healthy Internet
- Efficient and Effective Routing Configuration
- Internet Routing Registry awareness understanding participation

Routed backbone HDLC or PPP links between routers Easier routing configuration and debugging Switched backbone Frame Relay/ATM switches in core Surrounded by routers Complex routing & debugging Traffic Engineering

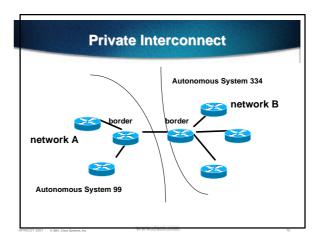
PoP Topologies

- Core routers high speed trunk connections
- Distribution routers and Access routers high port density
- Border routers connections to other AS's
- · Service routers hosting and servers
- Some functions might be handled by a single router

Transit, Peering and Default

- Transit carrying traffic across a network, usually for a fee
- Peering exchanging routing information and traffic
- Default where to send traffic when there is no explicit match is in the routing table

Peering and Transit example


provider A

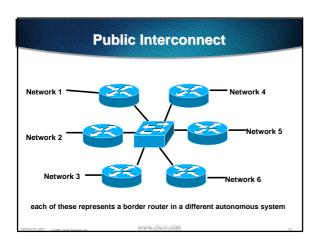
| IXP-West |
| Provider D

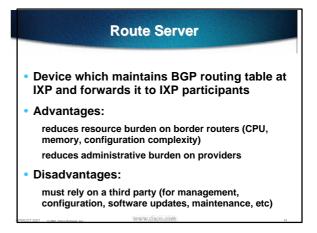
| Provider D

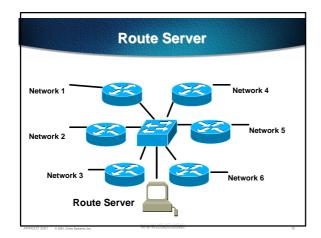
| Provider D

| Provider C |
| A and B can peer, but need transit arrangements with D to get packets

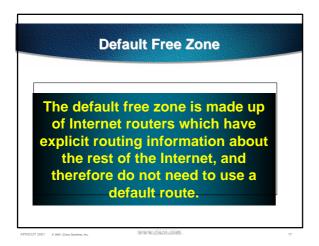
Public Interconnect Points

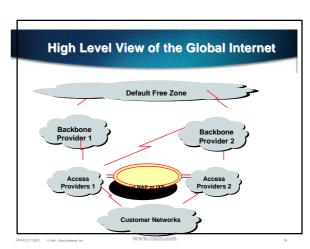

• IXP - Internet eXchange Point

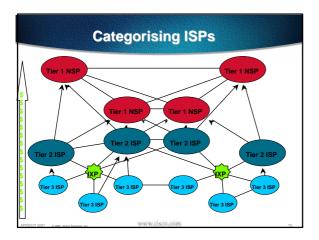

to/from C


- NAP Network Access Point
- local IXPs
 peering point for a group of local/regional providers
- transit IXPs
 connects local providers to backbone (transit) providers
- hybrid IXPs
 combines the function of local and transit

Public Interconnect Point


- Centralised (in one facility)
- Distributed (connected via WAN links)
- Shared, switched or routed interconnect Router, FDDI, Ethernet, ATM, Frame relay, SMDS, etc.
- Each provider establishes relationship with other provider at IXP
 - ISP border router peers with all other provider border routers





Inter-provider relationships

- Peering between equivalent sizes of service providers (e.g. Tier 2 to Tier 2)
 - shared cost private interconnection, equal traffic flows
 - "no cost peering"
- Peering across exchange points
 if convenient, of mutual benefit, technically
 foscible
- Fee based peering unequal traffic flows, "market position"

IP Addressing

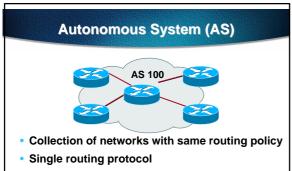
- Internet is classless
- Concept of Class A, class B or class C is no more
 - engineers talk in terms of prefix length, for example the class B 158.43 is now called 158.43/16.
- All routers must be CIDR capable
 - Classless InterDomain Routing
 - **RFC1812 Router Requirements**

IP Addressing

- Pre-CIDR (<1994)
 - big networks got a class A medium networks got a class B small networks got a class C
- Nowadays
 - allocations/assignments made according to demonstrated need CLASSLESS

IP Addressing

- IPv4 Address space is a resource shared amongst all Internet users
 - Regional Internet Registries delegated allocation responsibility by the IANA
 - APNIC, ARIN, RIPE NCC are the three RIRs
 - RIRs allocate address space to ISPs and Local Internet Registries
 - ISPs/LIRs assign address space to end customers or other ISPs
- 51% of available IPv4 address space used


© 2001, Claco Systems, Inc. 23

Definitions

- Non-portable 'provider aggregatable' (PA)
 - Customer uses RIR member's address space while connected to Internet
 - Customer has to renumber to change ISP Aids control of size of Internet routing table
- May fragment provider block when multihoming
- PA space is allocated to the RIR member with the requirement that all assignments are announced as an aggregate

Definitions

- Portable 'provider independent' (PI)
 - Customer gets or has address space independent of ISP
 - Customer keeps addresses when changing ISP
 - Bad for size of Internet routing table
 - PI space is rarely distributed by the RIRs

- Usually under single ownership, trust and administrative control
- AS number obtained from RIR or upstream ISP

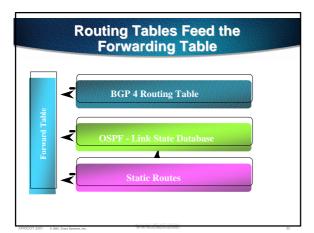
Routing versus Forwarding

- Routing = building maps and giving directions
- Forwarding = moving packets between interfaces according to the "directions"

IP Routing - finding the path

- Path derived from information received from a routing protocol
- · Several alternative paths may exist best next hop stored in forwarding table
- Decisions are updated periodically or as topology changes (event driven)
- Decisions are based on:

topology, policies and metrics (hop count, filtering, delay, bandwidth, etc.)


IP route lookup

- Based on destination IP packet
- "longest match" routing more specific prefix preferred over less specific prefix

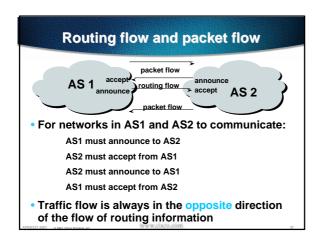
example: packet with destination of 10.1.1.1/32 is sent to the router announcing 10.1/16 rather than the router announcing 10/8.

IP Forwarding

- Router makes decision on which interface a packet is sent to
- Forwarding table populated by routing process
- Forwarding decisions:
 - destination address
 - class of service (fair queuing, precedence, others) local requirements (packet filtering)
- Can be aided by special hardware

Explicit versus Default routing

- Default:
 - simple, cheap (cycles, memory, bandwidth) low granularity (metric games)
- Explicit (default free zone)
 high overhead, complex, high cost, high granularity
- Hybrid
 - minimise overhead provide useful granularity requires some filtering knowledge


Egress Traffic

- How packets leave your network
- · Egress traffic depends on:
 - route availability (what others send you) route acceptance (what you accept from others)
 - policy and tuning (what you do with routes from others)

Peering and transit agreements

Ingress Traffic

- How packets get to your network and your customers' networks
- Ingress traffic depends on:
 what information you send and to whom
 based on your addressing and AS's
 based on others' policy (what they accept
 from you and what they do with it)

What Is an IGP?

- Interior Gateway Protocol
- Within an Autonomous System
- Carries information about internal prefixes
- Examples OSPF, ISIS, EIGRP...

terante channe come.

What Is an EGP?

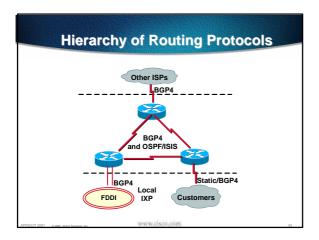
- Exterior Gateway Protocol
- Used to convey routing information between Autonomous Systems
- De-coupled from the IGP
- Current EGP is BGP4

Why Do We Need an EGP?

- Scaling to large network
 Hierarchy
 Limit scope of failure
- Policy

Control reachability to prefixes

Merge separate organizations


Connect multiple IGPs

Interior versus Exterior Routing Protocols

- Interior
 - automatic neighbour discovery
 - generally trust your IGP routers
 - routes go to all IGP routers
 - binds routers in one AS together
- Exterior
 - specifically configured peers
 - connecting with outside networks
 - set administrative
 - boundaries
 - binds AS's together
- ADDICOT COOL

Interior versus Exterior Routing Protocols

- Interior
 - Carries ISP infrastructure addresses only
 - ISPs aim to keep the IGP small for efficiency and scalability
- Exterior
 - Carries customer prefixes
 - Carries Internet prefixes
 - EGPs are independent of ISP network topology
- discourant.

ISIS - Intermediate System to Intermediate System

- Link State Routing Protocol
- OSI development now continued in IETF
- Supports VLSM
- Low bandwidth requirements
- Supports two levels

The backbone (level 2) and areas (level 1)

Route summarisation

OSPF - Open Shortest Path First

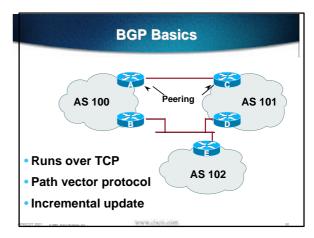
- Link State Routing Protocol
- Designed by IETF for TCP/IP RFC2328
- Supports VLSM
- Low bandwidth requirements
- Supports different types of areas
- Route summarisation and authentication

Why Areas - OSPF Example Backbone Area #0 Area #1 Area #2 Area #3 • Topology of an area is invisible from outside of the area • Results in marked reduction in routing traffic

Scalable Network Design

• ISIS

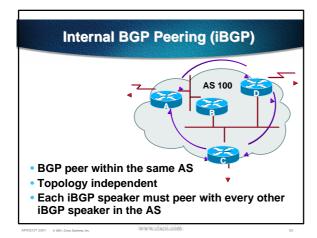
Implement level1 - level 2/level 1 hierarchy for large networks only

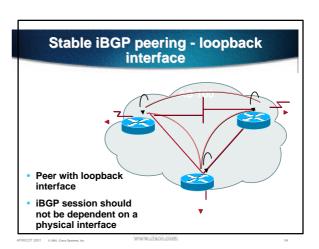

Internet friendly enhanced features

OSPF

Implement area hierarchy
Enforces good network design

- Requires Addressing Plan
- Implement Route Summarisation





BGP General Operation

- Learns multiple paths via internal and external BGP speakers
- Picks the best path and installs in the IP forwarding table
- Policies applied by influencing the best path selection

External BGP Peering (eBGP) AS 100 Between BGP speakers in different AS Should be directly connected

BGP Attributes

- Describes characteristics of a prefix
- Some BGP attributes:

AS path, Next hop, Local preference, Multi-Exit Discriminator (MED), Origin, Aggregator and Community.

Some are mandatory, some are transitive

BGP Path Selection Algorithm

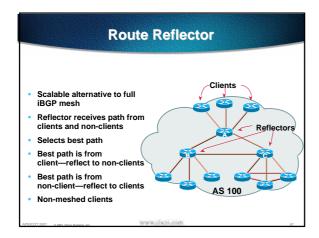
- Do not consider path if no route to next hop
- Highest local preference (global within AS)
- Shortest AS path
- Lowest origin code
 IGP < EGP < incomplete

BGP Path Selection Algorithm (continued)

- Multi-Exit Discriminator
 Considered only if paths are from the same AS
- Prefer eBGP path over iBGP path
- Path with shortest next-hop metric wins
- Lowest router-id

BGP in ISP Backbones

- All routers take part in BGP
- BGP are used to carry some or all of the Internet routing table customer prefixes
- IGPs are used to carry next hop and internal network information recursive route lookup
- Routes are never redistributed from BGP into the IGP or from the IGP into BGP



Scaling Techniques

- Administrative scaling (BGP Communities)
- Router resource scaling Route Reflectors (Confederations) Route Flap Damping Dynamic Reconfiguration

APRICOT 2001 © 2001, Claco Systems, Inc.

www.dsco.com

Route Reflector

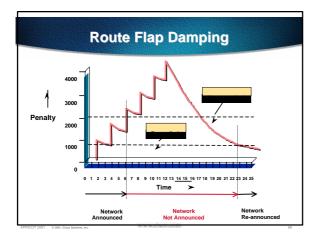
- Divide the backbone into multiple clusters (hint - build on OSPF/ISIS areas)
- At least one route reflector and few clients per cluster
- · Route reflectors are fully meshed
- Clients in a cluster could be fully meshed
- Single IGP to carry next hop and local routes

Route Reflector: Benefits

- Solves iBGP mesh problem
- Packet forwarding is not affected
- Normal BGP speakers co-exist
- Multiple reflectors for redundancy
- Easy migration
- Multiple levels of route reflectors

Route Reflector: Migration AS 300 AS 100 AS 200 Migrate small parts of the network, one part at a time.

Route Flap Damping


- Route flap
 - Going up and down of path or change in attribute BGP WITHDRAW followed by UPDATE = 1 flap eBGP neighbour going down/up is NOT a flap Ripples through the entire Internet
 - Wastes CPU
- Damping aims to reduce scope of route flap propagation

Route Flap Damping (Continued)

- Requirements
 - Fast convergence for normal route changes History predicts future behaviour Suppress oscillating routes Advertise stable routes
- Implementation described in RFC2439

Route Flap Damping Operation

- · Add penalty (1000) for each flap
- Exponentially decay penalty half life determines decay rate
- Penalty above suppress-limit do not advertise route to BGP peers
- Penalty decayed below reuse-limit re-advertise route to BGP peers

Route Flap Damping Operation

- Only applied to inbound announcements from eBGP peers
- Alternate paths still usable
- In Cisco IOS, controlled by:

Half-life (default 15 minutes)
reuse-limit (default 750)
suppress-limit (default 2000)
maximum suppress time (default 30 minutes)

Route Flap Damping Configuration

• Examples - ×

bgp dampening 30 750 3000 60

reuse-limit of 750 means maximum possible penalty is 3000 - no prefixes suppressed as penalty cannot exceed suppress-limit

Examples - ✓

bgp dampening 30 2000 3000 60

reuse-limit of 2000 means maximum possible penalty is 8000 - suppress limit is easily reached

Flap Dampening: Enhancements

- Selective dampening based on AS-path, Community, Prefix
- Variable dampening recommendations for ISPs

http://www.ripe.net/docs/ripe-210.html

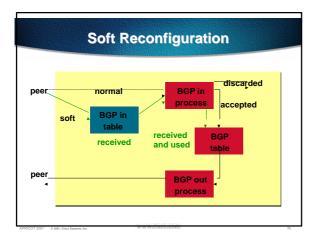
Flap statistics in Cisco IOS

show ip bgp neighbor < x.x.x.x> [dampened-routes | flap-statistics]

.....

www.dsco.com.

Soft Reconfiguration


Problem:

- Hard BGP peer clear required after every policy change because the router does not store prefixes that are denied by a filter
- Hard BGP peer clearing consumes CPU and affects connectivity for all networks

Solution:

Soft-reconfiguration

Seminar Harris No. 201496

Soft Reconfiguration

- New policy is activated without tearing down and restarting the peering session
- · Per-neighbour basis
- Use more memory to keep prefixes whose attributes have been changed or have not been accepted

Configuring Soft reconfiguration

router bgp 100
neighbor 1.1.1.1 remote-as 101
neighbor 1.1.1.1 route-map infilter in
neighbor 1.1.1.1 soft-reconfiguration inbound
! Outbound does not need to be configured!
Then when we change the policy, we issue an exec command

Route Refresh Capability

- Facilitates non-disruptive policy changes
- No configuration is needed
- No additional memory is used
- Requires peering routers to support "route refresh capability" - RFC2842
- clear ip bgp x.x.x.x in tells peer to resend full BGP announcement

APRICOT 2001 © 2001, Claco Systems, Inc.

www.dsco.com

Copyright © 2001, Cisco Systems, Inc. All rights reserved.

clear ip bgp 1.1.1.1 soft [in | out]

Soft Reconfiguration vs Route Refresh

- Use Route Refresh capability if supported find out from "show ip bgp neighbor" does not require additional memory
- Otherwise use Soft Reconfiguration
- Be nice to the Internet!

New York Control of

Address Space

- Approach upstream ISP or consider RIR membership for address space
- Supply addressing plan when requested remember Internet is classless addresses assigned according to need not want
- Assign addresses to backbone and other network layers - remember scalability!
- Some examples follow…

Principles of Addressing

 Separate customer & infrastructure address pools

Manageability

Different personnel manage infrastructure and assignments to customers

Scalability

Easier renumbering - customers are difficult, infrastructure is easy

Principles of Addressing

 Further separate infrastructure In the IGP:

p2p addresses of backbone connections router loopback addresses

Not in the IGP:

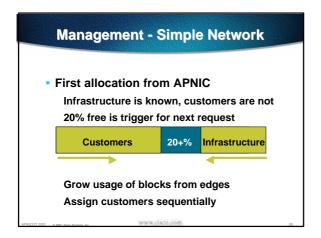
RAS server address pools Virtual web and content hosting LANs Mail, DNS servers

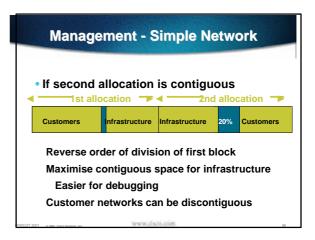
www.dsco.com

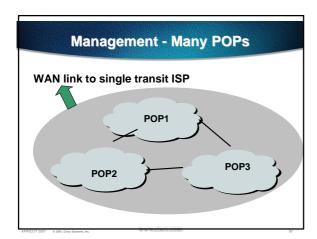
Principles of Addressing

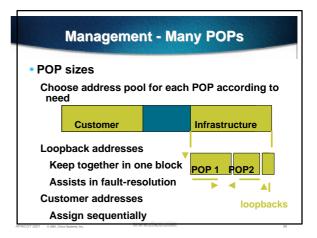
Customer networks

Carry in iBGP


Do not put in IGP – ever!


 Do not need to aggregate customer assigned address space


iBGP can carry in excess of 200,000 prefixes, no IGP is designed to do this

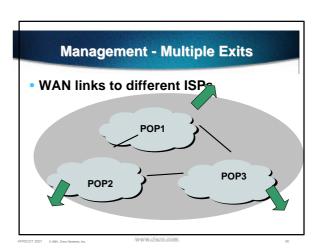

APRICOT 2001 © 2001, Claco Systems, Inc.

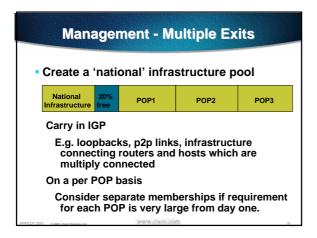
www.dsco.com.

Management - Many POPs

- /20 minimum allocation is not enough for all your POPs?

Deploy addresses on infrastructure first


- Common mistake:


Reserving customer addresses on a per POP basis

- Do not constrain network plans due to lack of address space

Re-apply once address space has been used

There is plenty of it!

Network Design

- Aim for simplicity, scalability and reliability
- Plan the network coverage
- · Estimate growth over the next year
- Design the network

Network Coverage

- Where will you start and how?
- Where will it grow?
 One year is a long time in the Internet
 Future PoP sites
- How big will it grow?
 Inter-site bandwidth availability
- Does it match the business plan?

Network Design

- Start as you mean to continue
- Design scalability from day one hierarchy separate functions
- Choose your IGP carefully scalability, standards knowledge and expertise

Designed in Redundancy

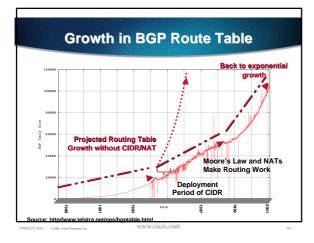
- Design goal should be two of everything
 - Each site should have at least two backbone WAN connections
 - Consider two core routers for each backbone site
- Out of Band management network
- Test lab/network
- Documentation!

Deploying IGP

- Keep IGP small!
 - Smaller IGP, faster convergence in case of link problems
 - Use BGP for customer prefixes, dial pools, and other networks
- Use summarisation between areas of network hierarchy
- Use ip unnumbered where possible

External Connections

- Don't need BGP from day one apply for an AS and deploy BGP only when it is needed i.e. when multihoming
- When deploying BGP
 iBGP carries customer networks only
 IGP carries network link information only
 Do not distribute BGP routes into IGP


Routing Etiquette

Being a good Internet citizen

"Problems on the Internet"

- Concern about rate of Internet growth http://www.isc.org/ds/
- Large number of routes
 http://www.employees.org/~tbates/cidr.plot.html
- Routing instability
 http://www.merit.edu/ipma/reports
- Difficulties diagnosing problems
- Quality of Service??

and vice-versa

Effects of CIDR on Internet

- Currently around 100000 routes
 Still too big
- If Internet were unaggregated Would be over 300000 networks (?) May have run out of IPv4 addresses What size of routers required? How stable would the Internet be?

APRICOT 2001 © 2001, Claco Systems, Inc.

www.dsco.com

CIDR - Examples

- Must announce network block assigned by RIR or upstream ISP
- Do not announce subnets of network block, or subnets of other ISPs' network blocks unless exceptional circumstances
- On Cisco routers use redistribute static, or aggregate-address, or network/mask pair

CIDR - Examples router bgp 1849 network 194.216.0.0 Redistribute redistribute static static ! Must have a matching IGP route ip route 194.216.0.0 255.255.0.0 null0 router bgp 1849 Aggregate network 194.216.0.0 aggregate-address 194.216.0.0 255.255.0.0 address ! More specific route must exist in BGP table router bgp 1849 network 194.216.0.0 mask 255.255.0.0 Network/mask pair ! Must have a matching IGP route ip route 194.216.0.0 255.255.0.0 null0

CIDR - Positive Efforts

- Most ISPs now filter all prefixes longer than /24
- Some ISPs pay attention to Tony Bates' CIDR report
- Some ISPs filter according to policy registered in the Internet Routing Registry
- No aggregation or bad aggregation could result in no connectivity

Aggregation

- Announce aggregate to rest of Internet
- Put it into Routing Registry (route object)
- Keep more specifics internal to network
 Use iBGP for carrying customer networks
 Use IGP for carrying backbone addresses
 Aggregate internally when possible

Aggregation - Good Example

- Customer link goes down their /26 network becomes unreachable
- /19 aggregate is still being announced no BGP hold down problems no BGP propagation delays no dampening by other ISPs

Aggregation - Good Example

- Customer link returns
- Their /26 network is visible again
- The whole Internet becomes visible immediately
- Quality of Service perception

APRICOT 2001 © 2001, Claco Systems, Inc.

Aggregation - Bad Example

- · Customer link goes down
 - Their /23 network becomes unreachable
- Their ISP doesn't aggregate their /19 network block
 - /23 network withdrawal announced to peers starts rippling through the Internet
 - added load on all Internet backbone routers as network is removed from routing table

Aggregation - Bad Example

- Customer link returns
 - Their /23 network is now visible to their ISP
 - Their /23 network is re-advertised to peers
 - Starts rippling through Internet
 - Load on Internet backbone routers as network is reinserted into routing table
 - Some ISP's dampen flaps
 - Internet may take 10-20 min or longer to be visible
 - Quality of Service???

Aggregation - Summary

- Good example is what everyone should do!
 - Adds to Internet stability
 - Reduces size of routing table
 - Reduces routing churn
 - Improves Internet QoS for everyone
- Bad example is what many still do!
 - Laziness? Lack of knowledge?

"The New Swamp" - Feb 2001

- Areas of poor aggregation
- 192/3 space contributes 78000 networks rest of Internet contributes 22000 networks

	letworks	Elock	Networks	Block	Networks	Block	Networks
192/8	6602	200/8	2902	208/8	4987	217/8	400
193/8	2908	201/8		209/8	5392	24/8	1466
194/8	3122	202/8	4174	210/8	1445	61/8	230
195/8	1839	203/8	7280	211/8	882	62/8	575
196/8	604	204/8	5023	212/8	2193	63/8	2833
197/8	0	205/8	3395	213/8	1049	64/8	3423
198/8	4853	206/8	4523	214/7	23	65/8	283
199/8	4462	207/8	4583	216/8	5391	66/8	470

"The New Swamp" - July 2000

 192/3 space contributes 69000 networks - rest of Internet contributes 16000 networks

Block	Networks	Block	Networks	Block	Networks	Block	Networks
192/8	6352	200/8	2436	208/8	4804	12/8	1047
193/8	2746	201/8		209/8	4755	24/8	1122
194/8	2963	202/8	3712	210/8	1375	61/8	80
195/8	1689	203/8	5494	211/8	532	62/8	428
196/8	525	204/8	4694	212/8	1859	63/8	2198
197/8	0	205/8	3210	213/8	635	64/8	1439
198/8	4481	206/8	4206	214/7	14		
199/8	4084	207/8	3943	216/8	4177		

13310 4004 20170 3343 2107

Original Swamp Cause

- Early growth of Internet
- Classful network allocation
- Small number of connected networks
- · Lack of foresight by all

APRICOT 2001 © 2001, Cisco Systems, Inc.

New Swamp Persists

- Lazy or technically naïve ISPs announcing 32 /24s rather than /19 aggregate block
 - announcing customer prefixes as they connect rather than aggregate block only
- Poorly thought out multihoming
- Technical solutions keep ahead of problem so far:

faster routers, more memory, CIDR

Solutions

- Don't route other ISP's address space unless in failure mode during multihoming
- Aggregate!
- Don't announce subprefixes of your assigned block
- Be prudent when announcing small prefixes out of former A and B space

Solutions

- Encourage other ISPs to be good citizens don't route their bad citizenship
- Multihoming fragments address space think carefully about set up and requirements load balancing versus resilience

http://infopage.cw.net/Routing

Efforts

- Tony Bates' CIDR report sent to nanog, apops and eof mail lists
- Routing Report sent to APOPS, ARIN rtma and RIPE routing-wg
- Regional Internet Registries
- Many ISPs still care
- Peer pressure
- YOU!

Renumbering - motivation

- Same as motivation for aggregation holes are bad, using swamp space
- First time Internet connection
 legal address space, practical addressing scheme
- New Provider
 renumber into new provider's block
 reduces fragmentation and improves routability

Renumbering - how to?

 PIER - Procedures for Internet and Enterprise Renumbering

http://www.isi.edu/div7/pier/papers.html

- Be aware of effect on essential services
 e.g. DNS ttl requires lowering, router filters
- Use DHCP, secondary addressing
- Not difficult but needs planning

Route Flap Damping

- Route Flap technical description earlier
- Many ISPs now suppress route flaps at network borders
- Cisco BGP Case Study at http://www.cisco.com/warp/public/459/16.html
- · Recommended parameters are at

http://www.ripe.net/docs/ripe-210.html

Route Flap Damping - Caution

- Be aware of potential problems
- Unreachability could be due to dampening, not disconnection
- Border routers need more memory and CPU
- Train your staff!

Name for 15th No. 2004

Filtering Policies

- Filter announcements by peers
 AS list, prefixes
- Only accept what is listed in routing registry
 - avoids configuration errors and routing problems authorisation?
- Only announce what you list in routing registry
- · Keep routing registry and filters up to date

"Documenting Special Use Addresses" - DSUA

 Private and Special Use addresses must be blocked on all BGP peerings, in and out:

http://www.ietf.org/internet-drafts/draft-manning-dsua-06.txt

```
ip prefix-list private-sua deny 0.0.0.0/8 le 32 ip prefix-list private-sua deny 10.0.0.0/8 le 32 ip prefix-list private-sua deny 127.0.0.0/8 le 32 ip prefix-list private-sua deny 127.0.0.0/8 le 32 ip prefix-list private-sua deny 192.16.0.0/12 le 32 ip prefix-list private-sua deny 172.16.0.0/12 le 32 ip prefix-list private-sua deny 192.0.2.0/24 le 32 ip prefix-list private-sua deny 192.168.0.0/16 le 32 ip prefix-list private-sua deny 224.0.0.0/3 le 32 ip prefix-list private-sua deny 0.0.0.0/0 ge 25 ip prefix-list private-sua permit 0.0.0.0/0 le 32
```

ICOT 2001 © 2001, Ciaco Systems, In

Definition

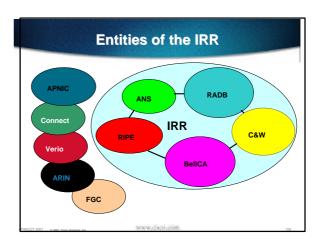
 "A public authoritative distributed repository of routing information"

Public databases

Distributed repository of information

Have authoritative data

Vendor independent


APRICOT 2001 © 2001, Cisco Systems, Inc.

WWW,0500,000

126

Composition

- Routing Policy Details
- Routes and their aggregates
- Topology Linking AS's
- Network components such as routers
- Is separate from other information such as domains and networks

Relationship Table Registry APNIC Yes Soon Yes Nο RIPE Yes Yes No RADB Yes Nο Yes Nο C&W Yes ANS Yes No No BellCA Yes ARIN Yes Yes No InterNIC' No

Relationships 37 RRs around the world C&W, ANS and BellCA - provider run RRs Other RRs run by Verio, FGC, Connect, etc... RIPE RR - European providers ARIN RR - launched 8 February 1999 RADB - Default RR for rest of world APNIC - plans to be full member of IRR very soon.

Benefits of an IRR

- Operational Support
- Information
- Configuration
- Problem diagnosis
- Improved Service Quality
- Tools for consistency checking

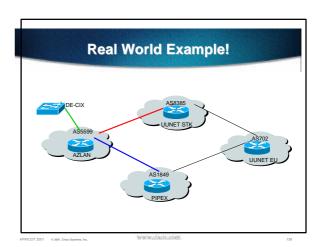
Information

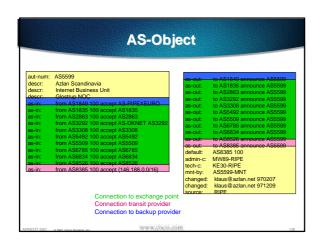
- Routing policy repository
- "Map of global routing topology"
- Routing policy between neighbouring AS's
- Device independent description of routing policy

Configuration

- Supports network filtering
- Configures routers and policies
- Revision control
- Sanity checking
- Simulation

terante channo contr

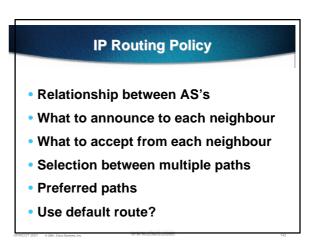

Key Objects and Syntax of RIPE-181

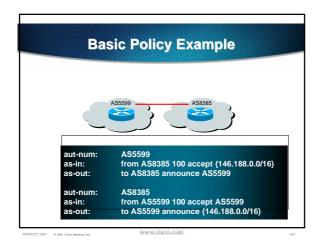

- Representation
- AS Object
- AS Macro
- Route Object
- Authorisation Maintainer Object

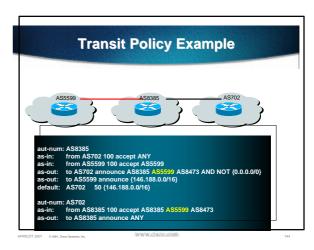
Representation

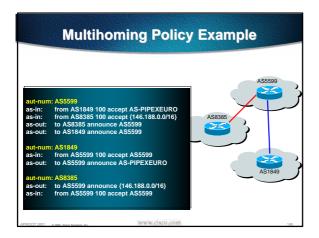
- ASCII printable
- Attributes by tag:value lines
- Objects separated by empty lines
- RIPE-181 and RPSL

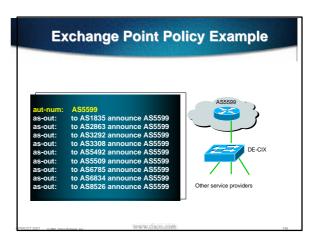
WWW.0500.00M

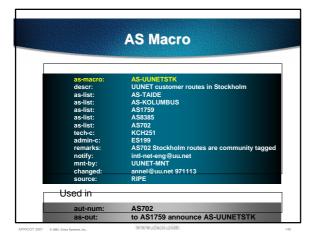





• Can represent policy using Boolean expressions (AND, OR, NOT) Keyword ANY - means "everything" Communities and AS Macros Route lists - {prefixes} Cost to indicate preference Attribute DEFAULT - accept 0.0.0.0


Syntax for AS Object


Mandatory Fields aut-num, descr, admin-c, tech-c, mnt-by, changed, source, as-in, as-out Optional Fields as-name, interas-in, interas-out, as-exclude, default, guardian, remarks, notify



AS Macro

- Collection of AS's or other AS macros
- Describes membership of a set
- · Contains no policy info
- Scales better
- Can differentiate between customer and peer routes

Fields in AS Macro

- Mandatory Fields
 - as-macro, descr, as-list, tech-c, admin-c, mnt-by, changed, source
- Optional Fields
 - guardian, remarks, notify

Route Object

- Represents a route in the Internet
- Contains all membership information
- Only one origin possible
- Classless (should be aggregated)
- Can support holes and withdrawn

APRICOT 2001 © 2001, Claco Systems, Inc.

Fields in Route Object Mandatory Fields route, descr, origin, mnt-by, changed, source Optional Fields hole, withdrawn, comm-list, remarks, notify Example: route: 195.129.0.0/19 descr: UNNET-NET origin: A\$702 remarks: UUNET-filter inbound on prefixes longer than /24 notify: intl-net-eng@uu.net mnt-by: UUNET-MMT changed: annel@uu.net 970501 source: RIPE

How to register and update information in the IRR

- Frequently used objects
- Update procedures

Modifying Objects

Deleting Objects

Submitting Objects

Authorisation/Notification

Errors and Warnings

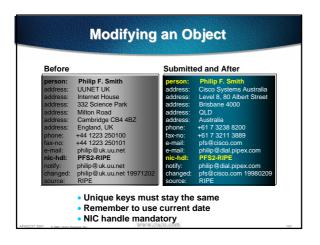
NIC handles

Frequently Used Objects

- Person contact person
- Maintainer authorisation of objects
- Inetnum address assignment
- Aut-num autonomous systems
- AS-macro set of AS's
- Route announced routes

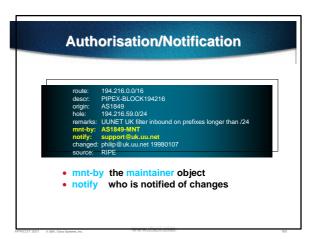
Unique Keys

- Uniquely identifies an object
- Updating object overwrites old entry need unique key
- Used in querying whois
- Web based full text searches available now, e.g.

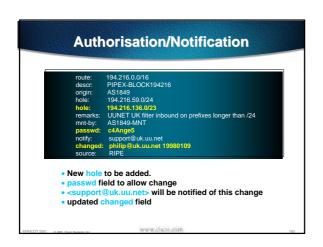

http://whois.apnic.net/apnic-bin/whois.pl

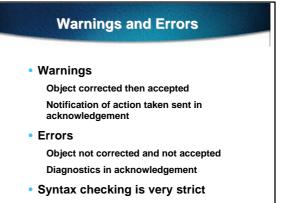
Unique Keys

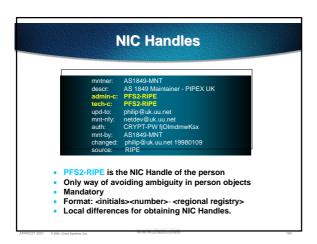
- Person name plus NIC handle
- Maintainer maintainer name
- Inetnum network number
- Aut-num AS number
- AS-macro AS macro name
- Route route value plus origin


APRICOT 2001 © 2001, Ciaco Systems, Inc.

www.dsco.com.



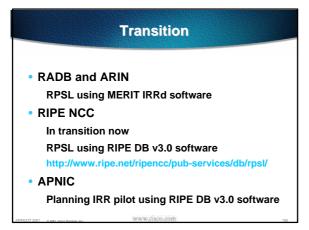

• Email Interface - eg APNIC auto-dbm@apnic.net Robot mail box Send all database updates to this mailbox Can use LONGACK and HELP in the subject line apnic-dbm@apnic.net human mailbox questions on the database process

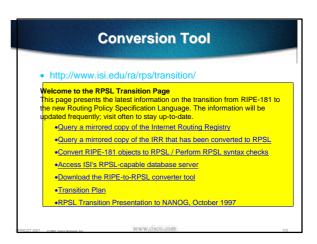


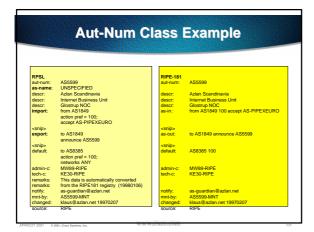
Maintainer Object Who is authorised Authorisation Method email-from and crypt-pw Mandatory Fields mntner, descr, admin-c, tech-c, upd-to, auth, mnt-by Optional Fields mnt-nfy, changed, notify, source

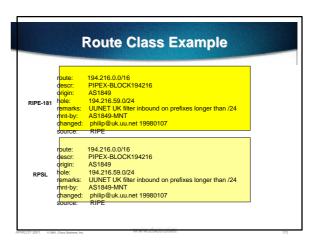
What is RPSL

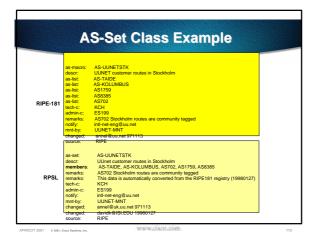
- RPSL is the development of RIPE-181
 RFC2622 Routing Policy Specification Language
- Allows more complex policy specification Looks very similar to RIPE-181 (but not backward compatible)
- All participants in the IRR have agreed to migrate to RPSL

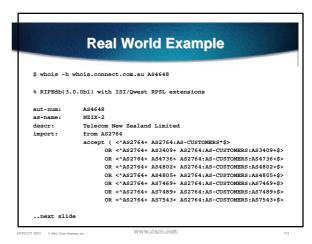

Many already have

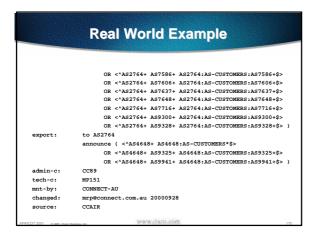

· Training materials at


http://www.isi.edu/ra/rps/training


/ww.isi.euu/ra/rps/trailillig


RPSL Database Software RPSL database software available: IRRd (Merit) – http://www.irrd.net/ In fully deployment RIPE DB v3.0 – http://www.ripe.net/ In beta test RIPE DB 3.0.0b2 with ISI RPSL extensions http://www.kessens.com/~david/software/ BIRD v1.1beta – ftp://ftp.isi.edu/ra/BIRD Status unknown





What tools and resources?

- RAToolset
 - www.isi.edu/ra/RAToolSet
- RIPE whois
 - ftp.ripe.net/ripe/tools
- Traceroute sites
 - www.traceroute.org
- Looking Glasses
 - http://www.traceroute.org/#Looking Glass

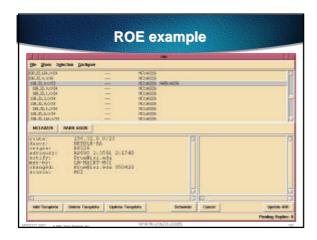
RAToolSet

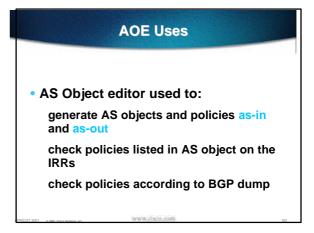
- Two versions
 - 3.5.8 supports RIPE-181
 - 4.6.3 supports RPSL
- Runs on most Unix platforms
- · Requires recent g++, tcl and tk
- Excellent for housekeeping, debugging and configuration

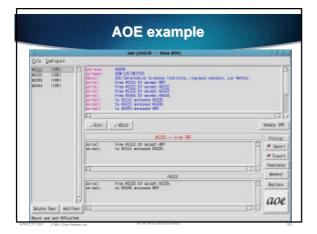
RAToolSet Tools

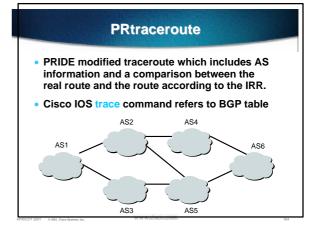
- RTconfig
 - Generate router configurations for Cisco, Bay, GateD and Juniper
- AOE aut-num object editor update aut-num, as-macro objects
- ROE route-object editor update route-object
- CIDRadvisor
 - advice on CIDRisation

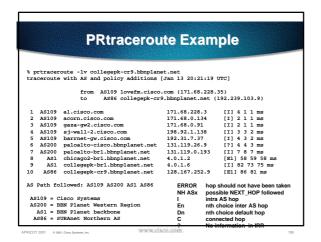
ROE Uses

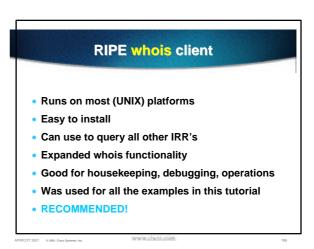

- Route object editor used to:
 - check for consistency of route objects in IRRs
 - synchronise route object entries in different IRRs
 - detect missing or unwanted route objects

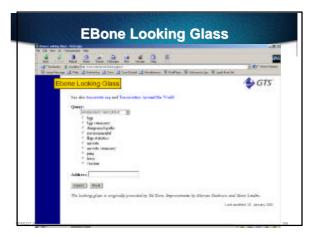

APRICOT 2001 © 2001, Cisco Sy


www.dsco.com

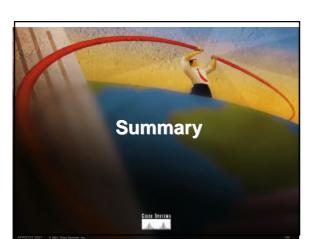

APRICOT 2001 © 2001, Cisco Systems, Inc.


0065





Should software be available as a commercial package? Better bundled/supported/debugged? Better integration/training? Most tools are freely available public efforts for the good of the "community"



Awareness & Training

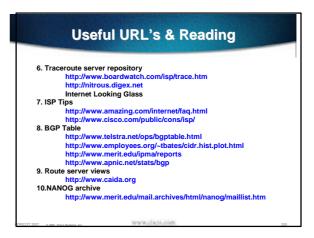
- Is there enough awareness about Internet routability?
- Is there enough training on the promotion of routability
- Headcount requirement depends on organisation too easy and cheaper to be irresponsible
- Overall organisational awareness of the issues ® overall efficiency, quality of service and support

Ways forward

- Routing Registry enhancements
 RPSL matches most of BGP's policy capabilities today
- Feedback on tool enhancements
- Feedback to vendors on equipment configuration enhancements
- More training, more education, more feedback!

Summary

- ISP networks and terminology
- The application of IGPs and BGP in an Internet network
- Shown tools which help diagnose and solve routing problems more easily
- Application of routing registries


Summary

- Made you more aware of the issues facing the Internet today
- Showed you how to make a positive contribution to the functioning of the Internet
- Promoted Routability!

The End!

- Any Questions?
- Please fill in evaluation form
- This presentation will be available at http://www.cisco.com/public/cons/isp/documents
- My contact info:
 Philip Smith <pfs@cisco.com>

1. CIDR ftp://ftp.isi.edu/in-notes/rfc{1517,1518,1519).txt http://www.ibm.net.ii/-hank/cidr.html ftp://ftp.uninett.no/pub/misc/eidnes-cidr.ps.Z Network addressing when using CIDR 2. AS numbers ftp://ftp.isi.edu/in-notes/rfc1930.txt Guidelines for creation, selection, and registration of an AS 3. Address Allocation and Private Internets ftp://ftp.isi.edu/in-notes/rfc1918.txt 4. BGP Dampening http://www.cisco.com/warp/public/459/16.html ftp://ftp.ripe.net/ripe/docs/ripe-210.txt European recommendations for route flap dampening ftp://engr.ans.net/pub/slides/nanog/feb-1995/route-dampen.ps 5. Routing Discussion http://www.ripe.net/wg/routing/index.html

1. RFC1786 "Representation of IP Routing Policies in a Routing Registry" ftp://ftp.isi.edu/in-notes/rfc1786.txt 2. RATools and RSPL ftp://ftp.apnic.net/let/frc/rfc2280.txt Tools http://www.isi.edu/ra/ Mailing List <ratoolset@isi.edu> 3. PRIDE Slides ftp://ftp.ripe.net/pride/docs/course-slides Guide ftp://ftp.ripe.net/pride/docs/guide-2.0txt.{ps}.tar.gz Tools ftp://ftp.ripe.net/pride/tools/* 4. IRR authorisation/notification ftp://ftp.ripe.net/pride/tools/* 5. RADB pointers http://www.ra.net http://www.ra.net http://www.ra.net/faq.htm 6. ISP run RR User documents http://infopage.cw.net/Routing