

12.0 IOS release images for ISPs

- 12.0S is the release for all ISPs for 7200, 7500 and GSR replaces 11.1CC and 11.2GS currently at 12.0(10)S1
- 12.0 is the "mainline" train for all other platforms replaces 11.2P and 11.3T currently at 12.0(11)
- Available on CCO, supported by TAC

nops © 2000, Cleco Systems, Inc. WW

New IOS Features

- 12.1 is the new "mainline" train comes from 12.0T no new features, aiming for stability
- 12.1T is the "technology train" new features introduced in IOS 12.1
- Both have very new IOS features, supporting new hardware and software
- Available on CCO, supported by TAC

© 2000, Cisco Systems, Inc. WWW.cisco

What is BGP for?? What is an IGP not for?

BGP versus OSPF/ISIS

Internal Routing Protocols (IGPs)
 examples are ISIS and OSPF
 used for carrying infrastructure
 addresses

NOT used for carrying Internet prefixes or customer prefixes

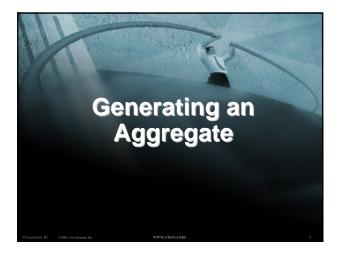
forkshops of 2000 Clear Systems Inc. WWW.cisco.c

BGP versus OSPF/ISIS

- BGP used internally (iBGP) and externally (eBGP)
- iBGP used to carry some/all Internet prefixes across backbone customer prefixes
- eBGP used to exchange prefixes with other ASes implement routing policy

P Workshops © 2000, Cisco Systems, Inc. WW

DO NOT:


distribute BGP prefixes into an IGP distribute IGP routes into BGP use an IGP to carry customer prefixes

BGP versus OSPF/ISIS

YOUR NETWORK WILL NOT SCALE

P Workshops © 2000, Cisco Systems, Inc.

......

Aggregation

- ISPs receive address block from Regional Registry or upstream provider
- Aggregation means announcing the address block only, not subprefixes
- Aggregate should be generated internally

orkshops 0 2000, Cisco Systems, Inc. WWW.C

Configuring Aggregation - Cisco IOS

- ISP has 221.10.0.0/19 address block
- To put into BGP as an aggregate:

router bgp 100


network 221.10.0.0 mask 255.255.224.0

ip route 221.10.0.0 255.255.224.0 null0 250

The static route is a "pull up" route

more specific prefixes within this address block ensure connectivity to ISP's customers

"longest match lookup"

Aggregation

- Address block should be announced to the Internet as an aggregate
- Subprefixes of address block should NOT be announced to Internet unless special circumstances (more later)

PIXP Workshops o zone Chen Systems Inc

.....

Announcing Aggregate - Cisco IOS

Configuration Example

```
router bgp 100

network 221.10.0.0 mask 255.255.224.0

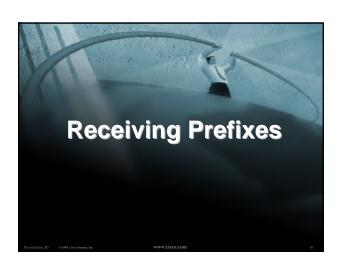
neighbor 222.222.10.1 remote-as 101

neighbor 222.222.10.1 prefix-list out-filter out!

ip route 221.10.0.0 255.255.224.0 null0
!

ip prefix-list out-filter permit 221.10.0.0/19
ip prefix-list out-filter deny 0.0.0.0/0 le 32
```

Announcing an Aggregate


- ISPs who don't and won't aggregate are held in poor regard by community
- Registries' minimum allocation sizes are /19s or /20s now

no real reason to see anything longer than a /21 or /22 prefix in the Internet

BUT there are currently >46000 /24s!

IXP Workshops 0 2000, Cisco Systems, Inc

www.cisco.con

Receiving Prefixes from downstream peers

- ISPs should only accept prefixes which have been assigned or allocated to their downstream peer
- For example downstream has 220.50.0.0/20 block should only announce this to peers peers should only accept this from them

P/IXP Workshops 0 7000 Chro Soutene Inc.

www.cisco.com

Receiving Prefixes - Cisco IOS

Configuration Example on upstream

```
router bgp 100
neighbor 222.222.10.1 remote-as 101
neighbor 222.222.10.1 prefix-list customer in !
ip prefix-list customer permit 220.50.0.0/20
ip prefix-list customer deny 0.0.0.0/0 le 32
```

PIXP Workshops © 2000, Clear Systems, Inc.

www.cisco.com

Receiving Prefixes from upstream peers

- Not desirable unless really necessary
 - special circumstances
- Ask upstream to either:
 originate a default-route
 announce one prefix you can use as
 default

P/IXP Workshops 0 2000, Claco Systems, Inc.

ww.cisco.co

Receiving Prefixes from upstream peers

Downstream Router Configuration

Receiving Prefixes from upstream peers

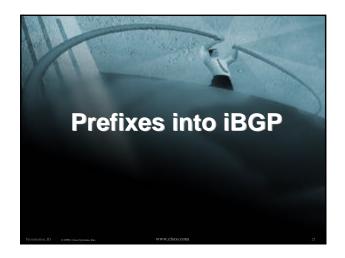
Upstream Router Configuration

```
router bgp 101
neighbor 221.5.7.2 remote-as 100
neighbor 221.5.7.2 default-originate
neighbor 221.5.7.2 prefix-list cust-in in
neighbor 221.5.7.2 prefix-list cust-out out
!
ip prefix-list cust-in permit 221.10.0.0/19
ip prefix-list cust-in deny 0.0.0.0/0 le 32
!
ip prefix-list cust-out permit 0.0.0.0/0
ip prefix-list cust-out deny 0.0.0.0/0 le 32
```

Receiving Prefixes from upstream peers

 If necessary to receive prefixes from upstream provider, care is required don't accept RFC1918 etc prefixes don't accept your own prefix don't accept default (unless you need it) don't accept prefixes longer than /24

TXP Workshops 0 2000, Cisco Systems, Inc.


www.cisco.com

Receiving Prefixes router bgp 100 network 221.10.0.0 mask 255.255.224.0 neighbor 221.5.7.1 remote-as 101 neighbor 221.5.7.1 prefix-list in-filter in ip prefix-list in-filter deny 0.0.0.0/0 ! Block default ip prefix-list in-filter deny 0.0.0.0/8 le 32 ip prefix-list in-filter deny 10.0.0.0/8 le 32 ip prefix-list in-filter deny 127.0.0.0/8 le 32 ip prefix-list in-filter deny 169.254.0.0/16 le 32 ip prefix-list in-filter deny 172.16.0.0/12 le 32 ip prefix-list in-filter deny 192.0.2.0/24 le 32 ip prefix-list in-filter deny 192.168.0.0/16 le 32 ip prefix-list in-filter deny 221.10.0.0/19 le 32 ! Block local prefix ip prefix-list in-filter deny 224.0.0.0/3 le 32 ! Block multicast prefix-list in-filter deny 0.0.0.0/0 ge 25 ! Block prefixes >/24 ip prefix-list in-filter permit 0.0.0.0/0 le 32

"Documenting Special Use Addresses" - DSUA

 This prefix-list MUST be applied to all external BGP peerings, in and out!

```
http://www.ietf.org/internet-drafts/draft-manning-dsua-03.txt
ip prefix-list rfc1918-dsua deny 0.0.0.0/8 le 32
ip prefix-list rfc1918-dsua deny 10.0.0.0/8 le 32
ip prefix-list rfc1918-dsua deny 127.0.0.0/8 le 32
ip prefix-list rfc1918-dsua deny 127.0.0.0/8 le 32
ip prefix-list rfc1918-dsua deny 169.254.0.0/16 le 32
ip prefix-list rfc1918-dsua deny 172.16.0.0/12 le 32
ip prefix-list rfc1918-dsua deny 192.0.2.0/24 le 32
ip prefix-list rfc1918-dsua deny 192.168.0.0/16 le 32
ip prefix-list rfc1918-dsua deny 224.0.0.0/3 le 32
ip prefix-list rfc1918-dsua deny 0.0.0.0/0 ge 25
ip prefix-list rfc1918-dsua deny 0.0.0.0/0 le 32
```


Injecting prefixes into iBGP

- Use iBGP to carry customer prefixes don't use IGP
- Point static route to customer interface
- Use BGP network statement
- As long as static route exists (interface active), prefix will be in BGP

ishops © 2000, Clean Systems, Inc. WWW.cisco.co

Router Configuration network statement

• Example:

```
interface loopback 0
  ip address 215.17.3.1 255.255.255.255
!
interface Serial 5/0
  ip unnumbered loopback 0
  ip verify unicast reverse-path
!
ip route 215.34.10.0 255.255.252.0 Serial 5/0
!
router bgp 100
  network 215.34.10.0 mask 255.255.252.0
```

Injecting prefixes into iBGP

- 200 network statement limit removed
- interface flap will result in prefix withdraw and reannounce

use "ip route...permanent"

 many ISPs use redistribute static rather than network statement

only use this if you understand why

Router Configuration redistribute static

Example:

```
ip route 215.34.10.0 255.255.252.0 Serial 5/0
!
router bgp 100
redistribute static route-map static-to-bgp
<snip>
!
route-map static-to-bgp permit 10
match ip address prefix-list ISP-block
set origin igp
<snip>
!
ip prefix-list ISP-block permit 215.34.10.0/22 le 30
```

Injecting prefixes into iBGP

- Route-map ISP-block can be used for many things:
 - setting communities and other attributes setting origin code to IGP, etc
- Be careful with prefix-lists and routemaps

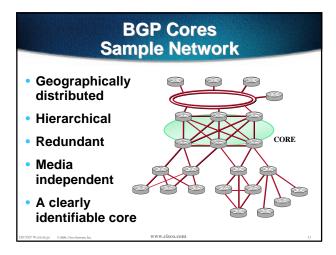
absence of either/both means all statically routed prefixes go into iBGP

5

IGP Limitations

Amount of routing information in the network

Periodic updates/flooding


Long convergence times

Affects the core first

Policy definition

Not easy to do

kshops © 2000, Cisco Systems, Inc. WWW.cisco.co

iBGP Core Migration Plan

Configure BGP in all the core routers

Transit path

Turn synchronization off

Turn auto-summarisation off

Check network border routers

ensure eBGP peerings only announce aggregates and won't leak specifics

rkshoos 0 2000. Cisco Systems, Inc. WWW.Cis

iBGP Core Migration Plan (Cont.)

Route Generation

Use static routes to create summaries if required

Redistribution from the IGP is NOT recommended as it may cause instability

P Workshoos 6 2000 Cheo Soutema Inc. WWW.CISCO.COII

iBGP Core Migration Plan (Cont.)

Route Generation—Example:

```
!
router bgp 109
network 200.200.200.0
network 201.201.0.0 mask 255.255.0.0
!
ip route 200.200.200.0 255.255.255.0 null0 250
ip route 201.201.0.0 255.255.0.0 null0 250
!
```

iBGP Core Migration Plan (Cont.)

- Verify consistency of routing information
 Compare the IGP routing table against the BGP table—they must match!
- Change the distance parameters so that the BGP routes are preferred

distance bgp 20 20 20

All IGPs have a higher administrative distance

P/IXP Workshops 0 2000, Cloco Systems, Inc.

www.cisco.con

iBGP Core Migration Plan (Cont.)

Filter "non-core" IGP routes

Method will depend on the IGP used

May require the use of a different IGP process in the core if using a link state protocol

The routes to reach all the core links plus the BGP peering addresses must be carried by the IGP

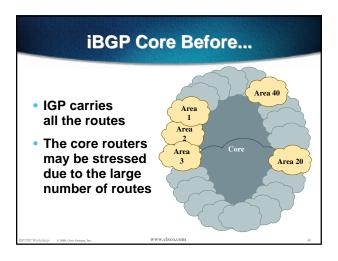
IXP Workshops © 2000, Clean Systems, Inc.

www.cisco.com

iBGP Core Migration Plan (Cont.)

Once iBGP carrying prefixes...

apply route-map to IGP redistribute commands so that only infrastructure addresses are in IGP


check that customer routes in IGP have disappeared

change BGP distance back to default

no distance bgp 20 20 20

P/IXP Workshops 0 2000, Cisco Systems, Inc

www.cisco.con

• IGP carries only core links plus peering address information • BGP carries all the routes • Increased Stability!

iBGP Core Results

 The routes from the core cannot be redistributed back into the IGP

Non-core areas need a default route

Amount of routing information in non-core areas has been reduced!

- Full logical iBGP mesh
- External connections must be located in the core

P/IXP Workshops © 2000, Cisco Systems, Inc.

www.cisco.com

Scaling Issues

- Full mesh core
 High number of neighbors
 Update generation
- Complex topologies
 Not a "simple" hierarchical network
 Multiple external and/or inter-region connections

Policy definition and enforcement

SP/IXP Workshops © 2000, Claco Systems, Inc.

www.cisco.con

Scaling Issues: Solutions

- Reduce the number of updates
 Peer groups
- Reduce the number of neighbors Confederations Route reflectors
- Use additional information to effectively apply policies eBGP provides extra granularity Confederations

Workshops 0 2000, Clear Systems, Inc. WWW.cisco.com

